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Review from Last Time (I)

• Theory of probability tells us how often to expect a given
outcome if we know the underlying distribution that defines
the physical process

I Probability Density Function (pdf) f(x; θ): prob that x lies
between x and x+ dx.∫ ∞

−∞
f(x, θ)dx = 1

• Statistical methods tell us how to estimate true quantities
given a set of measurements

I Needs a model to define the pdf
I Statistical questions particle physicists ask:

• What is our best estimate of a given parameter of our model
(or of a quantity that depends on the parameters of our
model)?

- How precise is our estimate of that parameter?
• Is the data consistent with our model?
- What range of parameters θi are allowed?
• Can we distinguish between two models and choose which is

best?



Reminder: Log Likelihood

• To estimate parameter(s) θ, maximize the likelihood

• Usual technique to find maximum, set derivative equal to zero

• Easier to maximize than lnL
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• If several θi can minimize with respect to each



Reminder: Connecting the Log Likelihood to the χ2

L(x; θ) =
n∏

i=1

Li

• Reminder from previous page: For Gaussian case

lnL = −
∑
i

(xi − µ)2

2σ2
+ const

• Compare this to

χ2 ≡
N∑
i=1

(xi − µ)2

σ2

• By inspection
χ2 = −2 lnL

• In special (but important) case of Gaussian distributions, the
χ2 and lnL are related



The Uncertainty on the estimate of θ

• χ2 calculates distance squared (in
units of σ between measured
distribution and prediction of the
model

• “Expect” χ2/N ∼ 1 if model is
good

• Probability that χ2/N is larger
than a specific value as a function
of n:

• From Gaussian case, can relate
−2 lnL to χ2

• Uncertainty on parameter θ
estimated by by find values where
−2 lnL increase by 1 unit



Goodness of Fit

• But estimates of parameters and the uncertainties only makes
sense if the model (pdf) used to determine the estimate is
correct

• It’s not trivial to determine whether a model is good

• Generically, we call parameter determination “fitting” the data

• Determination of whether a model is correct means asking
whether the data is consistent with coming from the proposed
pdf

I This is called determining the “goodness of fit”



χ2 Test of Goodness of fit

• Measures distance (in uncertainty
space) between data and model

χ2 =
∑
i

(y(xi)− fmodel(xi))
2

σyi
2

• Only works when uncertainties are
symmetric (Gaussian limit)

• Insensitive to whether data is above

or below the prediction
I Not ideal for flagging

systematic deviations in shape

I Eg, for lower plot to the right,

χ2 test gives less discrepancy

than you would notice by eye

• Use plot from page 5 to determine
probability that data would have a χ2

value at or larger than what we have
measured



Shape Dependent Tests: Kolmogorov-Smirnov (KS)

• Test designed to determine
consistency between two datasets

• Can either be two separate

measurements (eg do women and

men get the same number of colds

per year) or a measurement and a

prediction (eg real data and MC

data)

I Two samples not required to

have same number of events

• No assumptions about the shape of
the pdfs, only require that the
statistical size of the samples be
“large enough”

• For each sample, order data in
measured variable (x) and calculate
cumulative probability distribution
(cpd)

• Measure difference between the two
cpd’s as function of x

• Identify the largest difference D

• Probability that the two distributions
come from the same fundamental pdf:

P (D) = 2
∑
j

= 1∞(−1)j−1e−2j/D2

see http://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm for a good description



Constructing a model

• To apply any statistical test, we need a model for the data

• These models often complicated to construct.

• Require knowledge of
I Underlying physics distribution
I How detector affects the measurement
I Backgrounds present in the sample

• Kyle Cranmer in 2014 CERN summer school lectures calls this
“The Scientific Narrative”

I Describes 3 common narratives
• Monte Carlo Simulation narrative
• Effective modeling narrative
• Data driven narrative

I His slides are great. I’ve included them here.



















Example of Data Driven Narrative

• CDF measurement of B+ lifetime

B+ → ψK+, ψ → µ+µ−

• Invariant mass of µ+µ−K system shows peak at B+ mass, plus flat
background

• Decay position determined from fit to µ+µ−K vertex (distance from
primary vertex)

• Difficult to model distribution of vertex position of background from MC

• Instead use sidebands of mass distribution

• Unbinned likelihood fit to combined likelihood for signal and background



Hypothesis Testing: The Likelihood Ratio

• Experiments typically have background in addition to signal

• How do we know if there is a significant signal “on top of”
the background?

• Standard technique: Construct pdfs under two hypotheses
I Background only hypothesis
I Signal plus background hypothesis

• Ask whether the data are sufficient to distinguish between the
two



The Neyman-Pearson Lemma

• Suppose we have two hypotheses

I H0: Background only (Null Hypothesis)
I H1: Signal plus background

• Define α as the probability that we wrongly reject the Null
Hypothesis for a given set of measurements

• We want to define the region W for which we minimize the
probability of wrongly accepting H0 if H1 is true

• The region that minimizes the probability of wrongly accepting H0

is a contour in the likelihood ratio

λ( ~N) =
L( ~N |HS+B)

L( ~N |HB)

• Can define a “p-value” that relates the measured likelihood ratio to
the fraction of the time that H0 would have a likelihood ratio at
least as large as the data.



Example: p-value and Higgs Discovery

• Local p-value vs mH

• Dotted line is expected p-value for a SM Higgs with that mass

• Warning: “Look-elsewhere” effect
I When asking how likely something is, must take into account

how many places you looked!



Example: LUX Dark Matter Exclusion Limits

• Express measurement as contour in space of relevant
parameters (here, 90% c.l.)

• Show expected limit as well as measured one
I If measurement far from expected sensitivity, you should worry

Next 3 slides taken from A. Manalaysays’ talk presenting lates results July 2016









Systematic Uncertainties

• Systematic uncertainties an art rather than a science

• Need to estimate how wrong your hypothesis might be due to
I Mis-modeling of detector response (calibration or resolution)
I Variations in conditions (eg temp, pressure)
I Mis-modeling of physics processes (signal or background)

• Such uncertainties aren’t necessarily Gaussian (but we often
assume that they are)

• Typically quote them separately from statistical uncertainties



A New Trend: Profiling of Systematic Uncertainties’

• Itemize sources of systematic uncertainty (usually lot’s of
them)

I Often called “nuisance parameters”

• Attempt to write pdf’s for how systematic uncertainties affect
the measurement

I Use simulated data to determine pdf as function of quantity
you are measuring

• Include these uncertainties in likelihood function
I Usually have to assume Gaussian uncertainties

• “Profiling” is fancy word for including these in the fit

• Idea is to use the data to constrain these parameters

• Powerful but also dangerous


